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Learning Goals

* Use measurements as a decision tool to reduce uncertainty

e Understand difficulty of measurement; discuss validity of
measurements

* Provide examples of metrics for software qualities and process

e Understand limitations and dangers of decisions and incentives based
on measurements
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Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.




Case Study:
The Maintainability Index
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I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability.

 0-9 = Red
e 10-19 = Yellow
* 20-100 = Green

e
Code Metrics Viewer * B X
/i Analyze Solution | | o i Compare.. | Maintainability Index * Min: *| Max * < Goto Next ~
Hierarchy Maintainability Index = Cyclomatic Complexity = Class Coupling | Depth of Inheritance | Lines of Code
3 +3 checkopenfile.exe © 74 10 19 7 39
3 {) checkopenfile @ 74 10 19 7 39
3 “% Forml Qe 67 3 16 @ 7 36
8 “% Program @ 81 1 @ 3 @ 1 3
https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-
us/archive/blogs/codeanalysis/maintainability-index-
m » | range-and-meaning
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https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

Design Rational (from MsbN blog)

* "We noticed that as code tended toward O it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."

* "The desire was that if the index showed red then we would be saying
with a high degree of confidence that there was an issue with the
code.”

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx
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http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

I\/l a I ﬂta I n a bl | |ty | ﬂ d ex (Visual Studio since 2007)

- 171 = MAX (0, (171
- 5.2 * log(Halstead Volume)

- 5.2 * log(Halstead Volume) - 0.23 * (Cyclomatic Complexity)
-0.23 * (cyclomatic Complexity) ) 16 > * Iog;/(LineS of CodeF)) !

- 16.2 * log(Lines of Code} )*100 / 171)




Lines of Code

* Easy to measure > wc -/ filel file2...

The wc (i.e., word count) command
-[ : count only the number of lines
-w: count only the number of words
-m: count only the number of characters

-c: count only the number of bytes.

http://www.linfo.org/wc.html




Lines of Code

locprojects ___________________________

450 Expression Evaluator
2.000 Sudoku, Functional Graph Library
40.000 OpenVPN
80-100.000 Berkeley DB, SQLlight
150-300.000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML
500-800.000 gimp, glibc, mplayer, php, SVN
1.600.000 gcc
6.000.000 Linux, FreeBSD
45.000.000 Windows XP

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORON"}O



Normalizing Lines of Code

* lgnore comments and empty lines

* Ignore lines < 2 characters [ for (i = 0; i < 100; i += 1) printf("hello"); g
* Pretty print source code first

: : for (
e Count statements (logical lines of code) 4 i=0;

i <100;
i+=1

) {
printf("hello");

i




Normalizing per Language

Solving a particular ‘string processing problem’
Language |Statement factor

(productivity) Perl | |
C 1 Python | |
TCL |
C++ 2.5 T
Lisp |
Fortran 2 Rexx |
Java 2.5 Java |
Per| 6 C '
C++ |
Python 6 | | I , |
Smalltalk 6 0 50 100 150 200 250
https://blog.codinghorror.com/are-all- Median Hours to Solve Problem
programming-languages-the-same/ https://www.connellybarnes.com/documents/language productivity.pdf
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https://blog.codinghorror.com/are-all-programming-languages-the-same/
https://www.connellybarnes.com/documents/language_productivity.pdf

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

=171
-5.2*% IongaIstead Volumel)
- 0.23 * (Cyclomatic Complexity)

- 16.2 * log(Lines of Code)
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Halstead Volume

* Introduced by Maurice Howard Halstead in 1977

* Halstead Volume =
number of operators&operands *
log2(number of distinct operators&operands)

* Approximates size of elements and vocabulary
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Halstead Volume - example

main() |

{

Halstead Volume =
number of operators&operands *
log2(number of distinct operators&operands)

int a, b, Cc, avgy,
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + ¢c) / 3;

printf("avg = %d", avg); ‘hj

}
The unique operators are: main, (), {}, int, scanf, &, =, +, /, printf, ,, ; 12
The unique operands are: a, b, ¢, avg, "%d %d %d", 3, "avg = %d" 7

Volume: V' = 42 X logs19 = 178.4
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I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

=171
- 5.2 * log(Halstead Volume)
-0.23 * {Cyclomatic Complexity)‘

- 16.2 * log(Lines of Code)
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Cyclomatic Complexity

* Proposed by McCabe 1976

e Based on control flow graph, measures number of linearly
independent paths through a program

* linearly independent: each path has at least one edge that is not in
one of the other paths.
* no control flow statement: Complexity = 1
* 1 single-condition IF statement --> 2 path: Complexity = 2
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Cyclomatic Complexity

* Proposed by McCabe 1976

e Based on control flow graph, measures number of linearly
independent paths through a program

* linearly independent: each path has at least one edge that is not in
one of the other paths

 *= number of decisions
* = Number of test cases needed to achieve branch coverage
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Cyclomatic Complexity

M = #edges — #nodes + #end points

if (cl()) /-‘ 9 edges, 7 nodes and 1 end points:
£1(); 7N\ M=9-7+1=3

else <:> <:>
£2(); N/

if (c2()) /O\
£3();

else <:> <:>

Lv f4(); \\4‘/
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Application of Cyclomatic Complexity

* Limiting complexity during development
* Implications for software testing

if (cl())‘% cl() ==True, c2() ==True

£1(); __ L
else cl() == False, c2() == False  Branch Coverage

£2007 | ¢1() == True, c2() == False
if (c2()) cl() == False, c2() == True Path Coverage

£3();
else

| £40; branch coverage < cyclomatic complexity < number of paths.
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Maintainability Index (Origin)
Metrics for Assessing a Software System's Maintainability

Paul Oman and Jack Hagemeister

~ Software Engineering Test Lab
University of Idaho, Moscow, Idaho 83843
oman@cs.uidaho.edu

* Developers rated a number of HP systems in C and Pascal
e Statistical regression analysis to find key factors among 40 metrics

.
171—5.2In(HV)—0.23CC—16.2In(LOC)+50.0sinV/2.46 *|COM
= percentage Of comments

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

Maintainability Index (Origin)

Carnegie Mellon University
Software Engineering Institute

"good and sufficient predictors of maintainability”
"potentially very useful for operational Department of Defense systems".
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Thoughts?
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Thoughts

* Metric seems attractive * Parameters seem almost arbitrary,
calibrated in single small study code (few

* Easy to compute e =
developers, unclear statistical significance)

e Often seems to match intuition . o .
* All metrics related to size: just measure lines

of code?

* Original 1992 C/Pascal programs potentially
quite different from Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
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