
ECE444: Software Engineering

Metrics and Measurement 1

Shurui Zhou

Learning Goals

• Use measurements as a decision tool to reduce uncertainty
• Understand difficulty of measurement; discuss validity of

measurements
• Provide examples of metrics for software qualities and process
• Understand limitations and dangers of decisions and incentives based

on measurements

2

3

Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.

Case Study:
The Maintainability Index

4

Maintainability Index (Visual Studio since 2007)

Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability.

• 0-9 = Red
• 10-19 = Yellow
• 20-100 = Green

5

https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-
us/archive/blogs/codeanalysis/maintainability-index-
range-and-meaning

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

Design Rational (from MSDN blog)

• "We noticed that as code tended toward 0 it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."
• "The desire was that if the index showed red then we would be saying

with a high degree of confidence that there was an issue with the
code."

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

Maintainability Index (Visual Studio since 2007)

= 171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)

= MAX (0, (171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)
)*100 / 171)

Lines of Code

• Easy to measure > wc –l file1 file2…

http://www.linfo.org/wc.html

The wc (i.e., word count) command
-l : count only the number of lines
-w: count only the number of words
-m: count only the number of characters
-c: count only the number of bytes.

Lines of Code
LOC projects
450 Expression Evaluator

2.000 Sudoku, Functional Graph Library
40.000 OpenVPN

80-100.000 Berkeley DB, SQLlight
150-300.000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML
500-800.000 gimp, glibc, mplayer, php, SVN

1.600.000 gcc
6.000.000 Linux, FreeBSD

45.000.000 Windows XP

Normalizing Lines of Code

• Ignore comments and empty lines
• Ignore lines < 2 characters
• Pretty print source code first
• Count statements (logical lines of code)

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

for (i = 0; i < 100; i += 1) printf("hello");

/* How many lines of code is this? */

1

2

Normalizing per Language

Language Statement factor
(productivity)

C 1
C++ 2.5
Fortran 2
Java 2.5
Perl 6
Python 6
Smalltalk 6

https://blog.codinghorror.com/are-all-
programming-languages-the-same/

Solving a particular ‘string processing problem’

https://www.connellybarnes.com/documents/language_productivity.pdf
Median Hours to Solve Problem

https://blog.codinghorror.com/are-all-programming-languages-the-same/
https://www.connellybarnes.com/documents/language_productivity.pdf

= 171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)

Maintainability Index (Visual Studio since 2007)

Halstead Volume

• Introduced by Maurice Howard Halstead in 1977
• Halstead Volume =

number of operators&operands *
log2(number of distinct operators&operands)

• Approximates size of elements and vocabulary

Halstead Volume - example

12

7

= 171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)

Maintainability Index (Visual Studio since 2007)

Cyclomatic Complexity

• Proposed by McCabe 1976
• Based on control flow graph, measures number of linearly

independent paths through a program
• linearly independent: each path has at least one edge that is not in

one of the other paths.
• no control flow statement: Complexity = 1
• 1 single-condition IF statement --> 2 path: Complexity = 2
• ...

Cyclomatic Complexity

• Proposed by McCabe 1976
• Based on control flow graph, measures number of linearly

independent paths through a program
• linearly independent: each path has at least one edge that is not in

one of the other paths
• ~= number of decisions
• = Number of test cases needed to achieve branch coverage

Cyclomatic Complexity
M = #edges – #nodes + #end points

9 edges, 7 nodes and 1 end points:
M = 9 − 7 + 1 = 3

Application of Cyclomatic Complexity

• Limiting complexity during development
• Implications for software testing

c1() == True, c2() == True
c1() == False, c2() == False

c1() == True, c2() == False
c1() == False, c2() == True

Branch Coverage

Path Coverage

Maintainability Index (Origin)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

= percentage of comments

• Developers rated a number of HP systems in C and Pascal
• Statistical regression analysis to find key factors among 40 metrics

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

Maintainability Index (Origin)

"good and sufficient predictors of maintainability”
"potentially very useful for operational Department of Defense systems".

Thoughts?

Thoughts

• Metric seems attractive
• Easy to compute
• Often seems to match intuition

• Parameters seem almost arbitrary,
calibrated in single small study code (few
developers, unclear statistical significance)
• All metrics related to size: just measure lines

of code?
• Original 1992 C/Pascal programs potentially

quite different from Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

