ECE444: Software Engineering

Metrics and Measurement 1

Shurui Zhou

B:t“ The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

[BS) B5)

%), UNIVERSITY OF TORONTO

nnnnn

Learning Goals

* Use measurements as a decision tool to reduce uncertainty

e Understand difficulty of measurement; discuss validity of
measurements

* Provide examples of metrics for software qualities and process

e Understand limitations and dangers of decisions and incentives based
on measurements

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.

Case Study:
The Maintainability Index

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability.

 0-9 = Red
e 10-19 = Yellow
* 20-100 = Green

e
Code Metrics Viewer * B X
/i Analyze Solution | | o i Compare.. | Maintainability Index * Min: *| Max * < Goto Next ~
Hierarchy Maintainability Index = Cyclomatic Complexity = Class Coupling | Depth of Inheritance | Lines of Code
3 +3 checkopenfile.exe © 74 10 19 7 39
3 {) checkopenfile @ 74 10 19 7 39
3 “% Forml Qe 67 3 16 @ 7 36
8 “% Program @ 81 1 @ 3 @ 1 3
https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-
us/archive/blogs/codeanalysis/maintainability-index-
m » | range-and-meaning

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

%’%g« UNIVERSITY OF TORON"}O

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

Design Rational (from MsbN blog)

* "We noticed that as code tended toward O it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."

* "The desire was that if the index showed red then we would be saying
with a high degree of confidence that there was an issue with the
code.”

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

I\/l a I ﬂta I n a bl | |ty | ﬂ d ex (Visual Studio since 2007)

- 171 = MAX (0, (171
- 5.2 * log(Halstead Volume)

- 5.2 * log(Halstead Volume) - 0.23 * (Cyclomatic Complexity)
-0.23 * (cyclomatic Complexity)) 16 > * Iog;/(LineS of CodeF)) !

- 16.2 * log(Lines of Code})*100 / 171)

Lines of Code

* Easy to measure > wc -/ filel file2...

The wc (i.e., word count) command
-[: count only the number of lines
-w: count only the number of words
-m: count only the number of characters

-c: count only the number of bytes.

http://www.linfo.org/wc.html

Lines of Code

locprojects ___________________________

450 Expression Evaluator
2.000 Sudoku, Functional Graph Library
40.000 OpenVPN
80-100.000 Berkeley DB, SQLlight
150-300.000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML
500-800.000 gimp, glibc, mplayer, php, SVN
1.600.000 gcc
6.000.000 Linux, FreeBSD
45.000.000 Windows XP

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORON"}O

Normalizing Lines of Code

* lgnore comments and empty lines

* Ignore lines < 2 characters [for (i = 0; i < 100; i += 1) printf("hello"); g
* Pretty print source code first

: : for (
e Count statements (logical lines of code) 4 i=0;

i <100;
i+=1

) {
printf("hello");

i

Normalizing per Language

Solving a particular ‘string processing problem’
Language |Statement factor

(productivity) Perl | |
C 1 Python | |
TCL |
C++ 2.5 T
Lisp |
Fortran 2 Rexx |
Java 2.5 Java |
Per| 6 C '
C++ |
Python 6 | | I , |
Smalltalk 6 0 50 100 150 200 250
https://blog.codinghorror.com/are-all- Median Hours to Solve Problem
programming-languages-the-same/ https://www.connellybarnes.com/documents/language productivity.pdf

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://blog.codinghorror.com/are-all-programming-languages-the-same/
https://www.connellybarnes.com/documents/language_productivity.pdf

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

=171
-5.2*% IongaIstead Volumel)
- 0.23 * (Cyclomatic Complexity)

- 16.2 * log(Lines of Code)

’flTlEi ard S R rs St. Depart

‘ f Electrical & puter Enumeetino
’9 UNIVERSITY OF TORONTO

Halstead Volume

* Introduced by Maurice Howard Halstead in 1977

* Halstead Volume =
number of operators&operands *
log2(number of distinct operators&operands)

* Approximates size of elements and vocabulary

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Halstead Volume - example

main() |

{

Halstead Volume =
number of operators&operands *
log2(number of distinct operators&operands)

int a, b, Cc, avgy,
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + ¢c) / 3;

printf("avg = %d", avg); ‘hj

}
The unique operators are: main, (), {}, int, scanf, &, =, +, /, printf, ,, ; 12
The unique operands are: a, b, ¢, avg, "%d %d %d", 3, "avg = %d" 7

Volume: V' = 42 X logs19 = 178.4

cal & To;nputer ngineering
OF TORONTO

ectri
g:?:g UNIVERSITY

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

=171
- 5.2 * log(Halstead Volume)
-0.23 * {Cyclomatic Complexity)‘

- 16.2 * log(Lines of Code)

’flTlEi ard S R rs St. Depart

‘ f Electrical & puter Enumeetino
’9 UNIVERSITY OF TORONTO

Cyclomatic Complexity

* Proposed by McCabe 1976

e Based on control flow graph, measures number of linearly
independent paths through a program

* linearly independent: each path has at least one edge that is not in
one of the other paths.
* no control flow statement: Complexity = 1
* 1 single-condition IF statement --> 2 path: Complexity = 2

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Cyclomatic Complexity

* Proposed by McCabe 1976

e Based on control flow graph, measures number of linearly
independent paths through a program

* linearly independent: each path has at least one edge that is not in
one of the other paths

 *= number of decisions
* = Number of test cases needed to achieve branch coverage

?fi},? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Cyclomatic Complexity

M = #edges — #nodes + #end points

if (cl()) /-‘ 9 edges, 7 nodes and 1 end points:
£1(); 7N\ M=9-7+1=3

else <:> <:>
£2(); N/

if (c2()) /O\
£3();

else <:> <:>

Lv f4(); \\4‘/

“omputer Engineering
SITY OF TORONTO

Application of Cyclomatic Complexity

* Limiting complexity during development
* Implications for software testing

if (cl())‘% cl() ==True, c2() ==True

£1(); __ L
else cl() == False, c2() == False Branch Coverage

£2007 | ¢1() == True, c2() == False
if (c2()) cl() == False, c2() == True Path Coverage

£3();
else

| £40; branch coverage < cyclomatic complexity < number of paths.

’fi}j The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

) UNIVERSITY OF TORONTO

Maintainability Index (Origin)
Metrics for Assessing a Software System's Maintainability

Paul Oman and Jack Hagemeister

~ Software Engineering Test Lab
University of Idaho, Moscow, Idaho 83843
oman@cs.uidaho.edu

* Developers rated a number of HP systems in C and Pascal
e Statistical regression analysis to find key factors among 40 metrics

.
171—5.2In(HV)—0.23CC—16.2In(LOC)+50.0sinV/2.46 *|COM
= percentage Of comments

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

’fi"é The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

ig« UNIVERSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=242525

Maintainability Index (Origin)

Carnegie Mellon University
Software Engineering Institute

"good and sufficient predictors of maintainability”
"potentially very useful for operational Department of Defense systems".

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Thoughts?

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

@% UNIVERSITY OF TORONTO

Thoughts

* Metric seems attractive * Parameters seem almost arbitrary,
calibrated in single small study code (few

* Easy to compute e =
developers, unclear statistical significance)

e Often seems to match intuition . o .
* All metrics related to size: just measure lines

of code?

* Original 1992 C/Pascal programs potentially
quite different from Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

